
Towards detection of faulty traffic sensors in real-time

Nikolas Zygouras, Nikolaos Panagiotou,
Ioannis Katakis, Dimitrios Gunopulos {NZYGOURAS,N.PANAGIOTOU,KATAK,DG}@DI.UOA.GR

University of Athens, Athens, Greece

Nikos Zacheilas, Ioannis Boutsis, Vana Kalogeraki {ZACHEILAS,MPOUTSIS,VANA}@AUEB.GR

Athens University of Economics and Business, Athens, Greece

Abstract

Detecting traffic events using the sensor network
infrastructure is an important service in urban en-
vironments that enables the authorities to han-
dle traffic incidents. However, irregular mea-
surements in such settings can derive either from
faulty sensors or from unpredictable events. In
this paper, we propose an efficient solution to
resolve in real-time the source of such irregu-
lar readings by examining the correlation and the
consistency among neighbor sensors and exploit-
ing the wisdom of the crowd. Our experimental
evaluation illustrates the efficiency and practical-
ity of our approach.

1. Introduction
Sensor network infrastructures have been widely used for
traffic management in smart cities to provide important ser-
vices for the benefit of pedestrians, cyclists, motorists and
public transport. Such services are typically provided by
analyzing data provided by heterogeneous static and mo-
bile sensors. This enables the implementation of numerous
applications like proposing alternative routes, altering traf-
fic lights, etc.

The most common type of sensor which is utilized in such
environments is the SCATS sensor. They are static sensors
embedded at the city roads providing rich, real-time infor-
mation such as traffic flow measurements based on vehicles
that cross a specific segment. Despite their utility in many
traffic applications, SCATS sensors can be faulty. Thus,
one fundamental challenge in these settings is how to ef-
ficiently distinguish between irregular and faulty measure-
ments before taking any unnecessary actions.

Proceedings of the 2nd International Workshop on Mining Urban
Data, Lille, France, 2015. Copyright c©2015 for this paper by its
authors. Copying permitted for private and academic purposes.

Automatic identification of anomalies in streaming data is
an emerging field of research due to the large number of
applications (intrusion detection, event identification, etc).
Many algorithms that utilize machine learning and time se-
ries analysis techniques have been successfully applied for
the detection of unexpected events during the last years (Yi
et al., 2000). These methods offer high quality results and
are able to perform on massive data streams in real-time.
An interesting use-case is the automatic analysis of traffic
data generated by Smart Cities infrastructures. Human per-
sonnel are unable to monitor and efficiently identify prob-
lems on these data. The utilization of anomaly detection
techniques would provide great assistance to traffic opera-
tors as it would enable the automatic real-time identifica-
tion of traffic issues.

Recently, Crowdsourcing has emerged as an attractive
paradigm to exploit the intelligence of ubiquitous human
crowd (citizens) to extract useful information. Traditional
Crowdsourcing systems such as AMT1, CrowdFlower2,
etc., constitute marketplaces for human intelligence tasks
(HITs), that allow a requester to define a task, which is per-
formed by other human workers in exchange for a reward.
For example, mobile human workers with different char-
acteristics can be queried for geo-located tasks to extract
real-time information without needing an expensive infras-
tructure(Boutsis & Kalogeraki, 2014).

In this paper we develop an efficient approach that identi-
fies faulty readings from traffic sensors by examining the
correlations among them and by taking advantage of the
ubiquitous citizens through Crowdsourcing. We summa-
rize our contributions below:

• We present an efficient approach that identifies
anomalous sensors and uses Crowdsourcing to resolve
whether irregular measurements are due to faulty sen-
sors or irregular traffic.

1http://www.mturk.com/
2http://www.crowdflower.com/

http://www.mturk.com/
http://www.crowdflower.com/

ICML Workshop

Figure 1. The SCATS sensors locations at Dublin’s city centre

• We tackle the problem of automatically detecting
anomalous SCATS sensors with three methods: (i)
Pearson’s correlation, (ii) cross-correlation and (iii)
multivariate ARIMA model. The proposed methods
have to tackle the task efficiently in real-time.

• We develop our approach using the Lambda-
Architecture which combines a batch processing
framework (i.e. Hadoop3) and a distributed stream
processing system (i.e. Storm4) for efficiently pro-
cessing both historical and real-time data.

• We develop a Crowdsourcing system used to extract
answers from the human crowd based on the MapRe-
duce paradigm.

• We provide an experimental evaluation, which illus-
trates that our approach is practical and can effectively
identify irregular measurements in real-time.

2. Problem Description and System Model
2.1. Smart City

Smart cities exploit digital sensor devices that can be either
embedded at the city infrastructure or they can be mobile
(e.g., smartphones) in order to provide services for their cit-
izens that enhance their well-being. Such services may re-
late to traffic management, housekeeping information, etc.

In this paper we focus on Dublin, a smart city that uti-
lizes sensors for supervising and managing road traffic
(Kinane et al., 2014). In Dublin the traffic is controlled
by the Dublin City Council (DCC), which is responsible
to develop, maintain and manage the city road network.
To achieve that they exploit several heterogeneous data
sources that include: (i) SCATS sensors which are em-
bedded on the road and monitor real-time traffic density,
(ii) GPS traces from sensors embedded on buses, (iii) the

3https://hadoop.apache.org/
4https://github.com/nathanmarz/storm

LiveDrive radio where users can report traffic, and (iv)
pedestrian counters.

2.2. System model

In this section we provide our system model for the data
sensors that we examine, namely the SCATS sensors and
Crowdsourcing.

SCATS Sensors. SCATS (Sydney Coordinated Adaptive
Traffic System) is an innovative computerized traffic man-
agement system developed by Roads and Maritime Ser-
vices (RMS) Australia. SCATS sensors are fixed mag-
netic sensors deployed on intersections to measure the traf-
fic flow and the degree of saturation of roads’ lanes. In
Dublin city, each SCATS sensor produces and transmits a
new record every minute. Each record contains information
related to the timestamp t of the measurement, the sensor’s
ID i and finally the degree of saturation and traffic flow
measurements. In the provided dataset there are approxi-
mately 300 SCATS controlled intersections and 1000 dif-
ferent SCATS sensors throughout the road network. The
GPS locations of the SCATS sensors are presented in Fig-
ure 1. Degree of saturation measures how much a road’s
lane is utilized, while traffic flow measures the vehicles’
volume divided by the highest volume that has been mea-
sured in a sliding window of a week5. In this work we
decided to monitor the degree of saturation value, noted as
s, as it more reliable and informative than the traffic flow.
The degree of saturation of a particular SCATS sensor with
ID i at the timestamp t is noted si,t.

Crowdsourcing. Our crowdsourcing system comprises a
set of human workers denoted as wj which are able to re-
ceive task assignments. Tasks are being inserted to the sys-
tem by an authority, such as the DCC. Each task tk is as-
sociated with a number of attributes as < idk, latitudek,
longitudek, rewardk, descriptionk >. Hence, every
task posses a unique identifier (idk), the geographical co-
ordinates of the location that the task involves (latitudek,
longitudek), the corresponding reward (rewardk) for ex-
ecuting the task and a task description that describes the in-
formation that needs to be provided by the human worker.
An example of such a task description is: “Is there traffic
in O’Connell Street? Yes/No”. Finally each response pro-
vided by a worker is captured with a record by our system
using the worker and the task identifiers, coupled with the
response as follows: < wj , idk, responsejk >.

3. Architecture
In Figure 2 we display our system architecture which
consists of the following components: (i) a Distributed

5http://dublinked.com/datastore/datasets/
dataset-274.php

https://hadoop.apache.org/
https://github.com/nathanmarz/storm
http://dublinked.com/datastore/datasets/dataset-274.php
http://dublinked.com/datastore/datasets/dataset-274.php

ICML Workshop

M
ap

 R
e

d
u

ce

Distributed Database MapReduce Job
B

at
ch

P

ro
ce

ss
in

g

Input Source Preprocessing

Analysis

CrowdSourcing St
re

am

P
ro

ce
ss

in
g

A
p
p
lic
at
io
n
’s

U

se
rs

Figure 2. System Architecture

Stream Processing System (DSPS), (ii) a batch processing
framework, (iii) a distributed database system, and (iv) the
Crowdsourcing component that consists of the users’ mo-
bile devices. Our architecture is an instance of the Lambda-
Architecture6 as we exploit the fast processing offered by
DSPS and the fault-tolerance and parallelism provided by
current batch processing frameworks.

Incoming SCATS-sensor data are forwarded to a stream
processing graph. These data are pre-processed and stored
in the Distributed Database (i.e. Preprocessing component
in Figure 2) for further processing by the batch processing
component. We analyze the reported metrics via the Anal-
ysis component which examines if one of the sensors de-
viates significantly from its neighbors so it could possibly
be a faulty sensor. This component uses both the current
conditions and historical data for identifying such condi-
tions. In case that one such sensor is detected, the Analysis
component informs the Crowdsourcing component about
this situation. The latter is responsible to send the appro-
priate Crowdsourcing tasks that will enable us to detect if
the sensor is a faulty-one. Finally, the batch processing
component periodically computes new statistics about the
historical sensor data.

There are multiple DSPSs which support low latency pro-
cessing in real-time. Some of these systems are Apache
Storm, Spark Streaming7 and TUD-Streams (Bockermann
& Blom, 2012). We used Storm as the DSPS that will
perform the real-time processing of incoming sensor data.
Storm is one of the most commonly used DSPS, and is sup-
ported by major companies such as Twitter8. It has been
successfully applied for processing high volume of data in
different application domains, achieving high throughput

6lambda-architecture.net
7https://spark.apache.org
8http://twitter.com

and low response latencies (McCreadie et al., 2013). Fur-
thermore, we decided to use Storm due to its scalability fea-
tures that we also exploit in our previous work (Zygouras
et al., 2015). Storm users can change the parallelism of
the processing components to adapt to possibly workload
bursts.

Finally, for the analysis of the historical sensor data we
used the most commonly used open-source implementation
of the MapReduce programming model, Hadoop. We ex-
ecute periodical (i.e. at the end of each day) Hadoop jobs
for computing the basic metrics required by our proposed
techniques, described in more detail in Section 4. Our jobs
retrieve historical data from a distributed database, more
specifically MongoDB9. We decided to use MongoDB in-
stead of the Hadoop Distributed Filesystem (HDFS), as we
want to have fast access to the data from the DSPS compo-
nent of our architecture, for computing and storing short-
term statistics in real-time.

4. Methodology
The goal of this work is to monitor the streaming traf-
fic data and automatically pose Crowdsourcing tasks when
anomalous sensors are identified. In order to identify
anomalous sensors we propose three different outlier tests
that examine whether the SCATS sensors behave differ-
ently from their normal behavior. These outlier tests
are based on the following statistical measurements: (i)
Pearson’s Correlation (ii) Cross-Correlation and (iii) the
ARIMA Model. The normal behavior for each sensor is
calculated offline using the historical data. These meth-
ods are implemented using the Lambda architecture and
Crowdsourcing tasks are assigned to users when anoma-
lous SCATS sensors are identified.

4.1. Identifying Anomalous Sensors

In this section we describe the three statistical measure-
ments that are used and we explain how these are utilized
to detect anomalous SCATS sensors. Initially we applied a
simple statistic measurement named Pearson’s correlation
that identifies the correlation between pairs of SCATS sen-
sors. Then we used an extension of the first method, named
cross-correlation, to identify how many lags we should
shift backward a sensor’s values to maximize its pairwise
correlation with another adjacent sensor. The first two ap-
proaches use two well known measures in time series anal-
ysis. The disadvantage is that they check pairs of sensors
and not the group of sensors as a whole. For this reason we
applied a third approach that can be thought as a multivari-
ate ARIMA model which deals with the aforementioned
problem and is faster than the other approaches.

9http://www.mongodb.org/

lambda-architecture.net
https://spark.apache.org
http://twitter.com
http://www.mongodb.org/

ICML Workshop

4.1.1. PEARSON’S CORRELATION

The Pearson’s correlation coefficient is a well known statis-
tic that measures the linear relationship of two variables X
and Y . It takes values in [−1, 1], where 1 means that the
variables are positively correlated, −1 stands for negative
correlation and 0 for no correlation between X and Y . The
Pearson’s correlation, noted ρX,Y , is calculated by dividing
the covariance of X and Y with the product of the standard
deviations of X and Y (see Equations 1 and 2).

ρX,Y =
cov(X,Y)

σXσY
(1)

cov(X,Y) = E[(X − µX)(Y − µY)] (2)

In our scenario we calculated the pair-wise correlation be-
tween all SCATS sensors X and Y whose spatial distance
does not exceed a predefined threshold. This restriction
creates a sparse correlation matrix that contains non-zero
elements when SCATS sensors are spatially adjacent. We
calculate the sparse correlation matrix from the historical
data. Then, utilizing the streaming data that arrive contin-
uously in our system we periodically calculate the stream-
ing correlation of the adjacent SCATS sensors. We note as
noisy sensors’ pairs those that their streaming correlations
disagree significantly with the correlations calculated from
the historical data. If a particular sensor disagrees signif-
icantly with the majority of his neighbors then a crowd-
sourcing task is posed.

4.1.2. CROSS-CORRELATION

Cross-correlation is a statistical measure of similarity be-
tween two variablesX and Y as a function of the lag of one
relative to the other. More specifically cross-correlation be-
tween X and Y is calculated by shifting forward or back-
ward Y and calculating its correlation coefficient with X .
Cross-correlation with lag d, noted ρX,Y (d), is calculated
as seen in Equation 3. The numerator of the equation calcu-
lates the covariance of X and Y shifted d time bins back-
ward. Finally the denominator is the product of the stan-
dard deviations of X and the lagged Y .

ρX,Y (d) =

∑
i[x(i)− µX)(y(i+ d)− µY)]√∑

i(x(i)− µX)2
√∑

i(y(i+ d)− µY)2

(3)

A traffic anomaly at a particular location, in a road net-
work, may require some time in order to be propagated to
the adjacent sensors. This observation motivates us to con-
sider the cross-correlation between adjacent SCATS sen-
sors. More specifically we calculated the dmax that maxi-
mized the correlation between two adjacent sensors X and
Y (see Equation 4).

dmax = arg max
d

(ρX,Y (d)) (4)

In order to identify anomalies with cross-correlation we
followed a similar approach to the one utilizing the Pear-
son’s correlation measure, described before. The main dif-
ference is that we identified, using historical data, the lag
dmax that maximized the correlation between two SCATS
sensors X and Y . In the streaming analysis in order to cal-
culate the cross-correlation between the sensors we shifted
dmax lags backward the Y and we calculated its correla-
tion withX . Finally, we measured how much the streaming
cross-correlation deviates from the offline calculated cross-
correlation between X and Y using the optimal lag value
dmax.

4.1.3. MULTIVARIATE ARIMA MODEL

A common strategy to detect outliers in multivariate time
series (Yi et al., 2000) is to build a regression model for
each time series and evaluate whether the actual values vary
significantly from the predictions. The model receives as
input the previous L degree of saturation measurements for
a particular sensor with ID = 0 and the sensor’s N nearest
SCATS sensors {si,j : i ∈ [0, N], j ∈ [0, L], i, j ∈ Z}.
The goal of the model is to make the best prediction for
s0,t, denoted as ˆs0,t. The model is presented in detail in
Equation 5. This model can be thought as a multivariate
ARIMA model, as multiple sensors are used in order to
make the predictions.

ˆs0,t =φ0,1s0,t−1 + · · ·+ φ0,Ls0,t−L+

φ1,0s1,t + φ1,1s1,t−1 + · · ·+ φ1,Ls1,t−L+

. . .

φN,0sN,t + φN,1sN,t−1 + · · ·+ φN,LsN,t−L

(5)

In the training phase we use the historical degree of sat-
uration values in order to calculate the coefficients Φ of
Equation 5. In order to solve this problem we created the
matrix A and vector b containing the input data (degree of
saturation values) and the target values respectively. The Φ
parameters are the values that optimally solve Equation 6.
The solution of this system is given with the pseudo-inverse
transformation of the input presented in Equation 7. The
key property of this approach, in contrast to the two pre-
viously described techniques, is that it monitors the differ-
ent sensors together as a whole. The Pearson’s correlation
and the cross-correlation approaches investigated only pair-
wise correlation between SCATS sensors, ignoring poten-
tially useful information. On the other hand, the ARIMA-
based method aims at exploiting this information.

Φ = [φ0,1 . . . φ0,L . . . φ2,0 . . . φ2,L]

A =

s0,t−1 . . . s0,t−L . . . sN,t . . . sN,t−L

s0,t−2 . . . s0,t−L−1 . . . sN,t−1 . . . sN,t−L−1

...
. . .

...
. . .

...
. . .

...
s0,L . . . s0,0 . . . sN,L . . . sN,0

ICML Workshop

b = [s0,t . . . s0,L+1]
>

b = AΦ (6)

Φ̂ = (ATA)−1AT b (7)

In order to integrate this approach we split the historical
data in training and test set. Initially we calculated of-
fline, using the training set, the Φ̂ parameters. These pa-
rameters are the coefficients regarding the sensor’s previ-
ous measurements and its adjacent sensors’ past measure-
ments. Then we calculated how well the data fitted to these
models computing for each sensor its Mean Absolute Er-
ror (MAE). Finally, in order to identify anomalous SCATS
sensors while monitoring the streaming data we compute
for each sensor its MAE at a particular time window. We
label a sensor as ‘anomalous’ if its streaming MAE notice-
ably differs from its MAE measured using the testing set.

4.2. Implementation

Our system calculates the correlation among adjacent
SCATS sensors. This is achieved by adding the SCATS
sensors’ GPS locations in a k-d tree data structure during
system initialization and calculating the k nearest SCATS
sensors for each sensor. Furthermore, we developed our
system using the Lambda architecture. So we should en-
sure that the required data are transmitted to the appropriate
cluster nodes. Thus, we created a mapping of each SCATS
sensor ID to one or more cluster nodes. This guarantees
that each computing node contains all the required data for
a sensor’s adjacent sensors.

We define three parameters that help us configure the com-
ponents of our system. The first one is job periodicity
and defines when the batch jobs should re-execute (e.g.
each day, every week). The other two control the
stream processing computations. More specifically, the
stream threshold parameter defines how often we should
re-compute the examined metrics (e.g. every ten minutes),
while time window defines the sliding time window (e.g.
the previous hour) that will be used for keeping the past
sensor data necessary for the computations.

As we described in Section 3, we periodically invoke
Hadoop jobs that compute the different metrics we ex-
plained in Section 4.1. Map tasks read the pre-processed
sensor data from the MongoDB, and send them to the re-
duce tasks. We partition the data based on the SCATS sen-
sor ID to cluster node mapping. The idea is that neigh-
boring sensors should always end up on the same reduce
task in order to appropriately compute the examined met-
rics. Each sensor may belong to more than one nodes in
such cases we send the tuple multiple times (i.e. equal to
the number of nodes it is part of) to avoid information loss.

Figure 3. Crowdsourcing Application (a) Main Application, (b)
Push Notification, (c) Map Task

Reduce tasks are responsible for computing the metrics de-
scribed in Section 4.1 and store the results in MongoDB.

In the stream processing component, we implemented a
Storm topology (see Figure 2) that processes the real-time
sensor data. We exploit the parallelism offered by Storm by
having multiple instances of our Analysis component, run-
ning in parallel, in order to decrease latency. The topology
pre-processes the incoming data and stores them in Mon-
goDB. Also the pre-processed data are sent to the compo-
nent that invokes the three different techniques. Again we
partition the data based on the offline mapping, to guaran-
tee that all neighboring data will be processed by the same
component’s instance. Detected events are forwarded to the
Crowdsourcing component that is responsible to inform the
users that will help us detect if the sensor is faulty.

4.3. Crowdsourcing System

Misco. Our Crowdsourcing system has been developed us-
ing the Misco framework (Dou et al., 2011; 2010; Kakan-
tousis et al., 2012), which is based on the MapReduce
paradigm and tailored for mobile devices to provide an ex-
tensible and efficient way to develop distributed applica-
tions.

Our Crowdsourcing system is structured using (i) a Mas-
ter Server that keeps track of the tasks tk submitted when
anomalies are detected from SCATS sensors, assigns them
to human workers wj and returns the responses to the sys-
tem, and (ii) the Workers who are the human contributors
that process the crowdsourcing tasks. Each Worker is re-
sponsible to process queries and return the results to the
server. These tasks are executed by workers through their
personal smartphone devices or tablets.

Task assignment. Suppose that we need to exploit Crowd-
sourcing to determine the source of an event using a task
tj . We describe the step-by-step sequence followed so as to
process the task and return the results. In the implementa-
tion described below we considered Android-based devices

ICML Workshop

and thus we have utilized the Android SDK10.

For every task tj , the Master Server spans the task to a set
of map tasks that need to be forwarded to the human work-
ers wk. Since these tasks are geo-located only the workers
that reside close to the specific selection need to be selected
by the Master Server to provide information. However, in
order to avoid tracking the users we follow a different pol-
icy. We forward the task to all the workers and the tasks are
locally filtered at the mobile devices if their location is far
from the location of the task tj .

We use Push Notifications services to initiate the communi-
cation with the human workers, to be able to send the Map
task to the users without being restricted by their connec-
tion (WiFi, 3G, etc). Such services exist in all major mobile
operator systems and allow users to register for message
delivery when they are online through a connection server.

In order to be able to receive map tasks, each user first
needs to login to our system so that the Master server will
be aware of the user. At the same time the user also regis-
ters in the push notification service to retrieve its unique id.
During normal operation the Crowdsourcing applications
runs in the background (Figure 3a).

When the Master Server retrieves a new task tj from the
requester, it delivers a push notification to the user devices
with the task, through the Push Notification service. Once
the device receives the notification it examines whether the
user current location is close to the location of the task so
as to alert the user (Figure 3b). Next, if the user selects the
notification on his mobile device the Crowdsourcing appli-
cation is triggered and the task will be displayed in the user
screen to process the task (Figure 3c).

Finally, the responses for each map task are forwarded to
the Master Server that initiates the reduce phase to aggre-
gate the answers. The reduce phase is performed through
Majority Voting. Hence the Master Server identifies the re-
sponse responsejk for task tk with the maximum amount
of answers from all userswj and forwards the response that
represents the cause of the event to the system.

Crowd Feedback. The response retrieved by the crowd-
sourcing component enables the system to determine
whether the irregular readings derive from an unexpected
event (e.g., roadworks) or if the sensor is indeed faulty
when most of the workers answer “None of the above”.

5. Evaluation
We have evaluated our proposals on our local cluster con-
sisting of 4 VMs. Each VM had two CPU processors at-
tached and 3, 096 MB of RAM. All VMs were connected

10Android platform: http://www.android.com/

Parameter Value
job periodicity 24 hours
stream threshold 10 minutes
time window 1 hour

Table 1. Basic Configuration Parameters

to the same LAN and their clocks were synchronized us-
ing the NTP protocol. The frameworks we used were the
following: Storm 0.8.2, Esper 5.1 and MongoDB 2.6.5.

In Table 1, you can see the values of the basic configuration
parameters described in Section 4.2. For the experiments,
we used SCATS data from the period of April and May
of 2014. The distance threshold used for the neighbour-
ing sensors computation was set to 250 meters. Data from
April were used in order to calculate the historical corre-
lations, cross-correlations as well as the ARIMA models.
On the other hand, data from May were used for different
experimental runs (see below).

For the Pearson Correlation method we have stored the his-
torical correlations of the neighbour-pairs in the MongoDB
component. 7116 neighbour pairs were identified under the
distance threshold from a set of 900 SCATS sensors. The
correlation value ranged from almost perfect correlation,
for sensors of the same junction under different lane, to no
correlation at all for more distant sensors. Negative corre-
lation values between nearby sensors were also observed.
This could be explained by the opposite direction of the
lane the sensors are responsible for. In Figure 4, the cor-
relation matrix for a set of 30 nearby sensors is presented.
As expected, clusters are formed by adjacent sensors that
are highly correlated. Thus, it is reasonable to argue that
when the expected correlation is not observed there might
be a problem with the sensor. For the Cross-Correlation
method apart from storing the correlation value itself we
have also stored the time lag that maximizes the pair-wise
sensor correlation. The time lag range was set to a maxi-
mum of 10 minutes since the sensors are quite close to each
other and larger time lags are unlikely to significantly favor
the correlation value. In addition, the larger the time lag
range is, the more computationally demanding the method
will be. As it was expected, in most cases the highest cross-
correlation was observed with no time lag at all, since most
sensor pairs are responsible for different lanes of the same
highway junction. However, for more distant sensor-pairs
responsible for different highway junctions, small time lags
gave a boost on their correlation value. One way to under-
stand this is because vehicles require a short time to reach
consecutive junctions. In addition, this behaviour could be
also explained by the operation of traffic lights that trans-
fer the traffic from junction to junction on fixed time inter-
vals. Figure 5 depicts the distribution of the optimal time

http://www.android.com/

ICML Workshop

10 20 30

5

10

15

20

25

30

Correlation

Sensor ID

S
e

n
s
o

r
ID

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4. The correlation matrix of a set of
30 neighbors

0 5 10
0

500

1000

1500

2000

2500

3000

3500

lag

#
T

im
e

s
 M

a
x
im

iz
e

d
 C

o
rr

C
o

e
f

Figure 5. Distribution of the optimal time lag
value over all the neighbour-pairs

0 50 100 150
−20

0

20

40

60

80

100

120

Actual Values

P
re

d
ic

te
d

 V
a

lu
e

s

QQ Plot

Figure 6. The predicted and the actual de-
gree of saturation values over the validation
dataset

0 50 100 150
−20

0

20

40

60

80

100

120

Time (min)

D
e

g
re

e
 o

f
S

a
tu

ra
ti
o

n

Model Fit

Measured Value

Forecast

0 500 1000

0

50

100

150

200

Time (min)

D
e

g
re

e
 o

f
S

a
tu

ra
ti
o

n

Model Fit

Measured Value

Forecast

Figure 7. On the left there is a sensor whose values agree well with our forecast. On
the right there is a noisy sensor whose values diverge significantly from the predicted
and it is considered as faulty

10

13
0 82

37 3 161

Pearson
(105)

ARIMA
 (177)

Cross Correlation
 (135)

Figure 8. Venn diagram for the three proposed
methods

lag value over a sample of neighbor pairs.

In terms of the multivariate ARIMA method, a different
model was fitted to each sensor using as features all the
neighbor sensors. The performance of all the models was
aggregated and measured in terms of Mean Absolute Error
(MAE), Root Mean Squared Error(RMSE) and Correlation
Coefficient (CC) using a validation dataset. The results fol-
low on Table 2 with a low MAE value of 16.18 indicating
a decent fit.

Figure 6 shows the forecasting performance of the ARIMA
model on the validation dataset and Figure 7 gives an ex-
ample on forecasting two different sensors. Sensors such
as the one presented in Figure 7 (left) will be considered as
non-faulty since the deviation between the observed mea-
surements and the expectation is not significant. On the
other hand, sensors such as the one in Figure 7 (right),
given that it reports maximum values for a long period of

time, it is likely that it is faulty. These sensors are flagged
by our system for further manual evaluation or inspection
from the traffic operators.

The three methods were compared in terms of the number
of faulty sensors they identify. In addition, since the Corre-
lation and the ARIMA approaches focus at a very different
aspect of the same problem we measured the overlap be-
tween their results. Figure 8 displays the Venn diagram of
the results obtained over the period of one day during May
of 2014. As it was expected, the results of Pearson Corre-
lation and Cross-Correlation are highly overlapping since
for many sensors the optimal time lag is zero. On the other
hand, the ARIMA method identified different sensors as er-
roneous suggesting that the methods are complementary to
each other. Interestingly enough, 13 sensors were identified
as erroneous from all methods indicating that sensors op-
erate in an unexpected way in many settings and are more
likely to be faulty.

ICML Workshop

Metric Result
CC 0.68
MAE 16.8
RMSE 23.18

Table 2. The measurements that indicate the performance of the
multivariate ARIMA model

6. Related Work
Traffic monitoring has been a field of great interest in the
scientific community (Biem et al., 2010), (Patroumpas &
Sellis, 2012). These works detect unusual events based on
pre-defined rules so any updates to the traffic conditions
overtime is not taken into account. In contrast, our pro-
posal exploits historical data for updating the expected sen-
sor correlations and detects events only when the real-time
conditions deviate significantly from the expected. Authors
in (Ma et al., 2013) propose a novel city transportation ap-
plication that enables sharing of taxi rides in a large city.
Their goal was to develop an application that is beneficial
for both the citizens and the taxi drivers.

There has been significant work in traffic monitoring in the
use-case of Dublin. (Artikis et al., 2014) proposed a traffic
management system, based on heterogeneous data, which
used Crowdsourcing in order to resolve conflicting sensors
reports. (Zygouras et al., 2015) focused on monitoring the
traffic conditions of the city by considering the metrics re-
ported from sensors mounted on top of public buses. While
(Liebig et al., 2014a) and (Liebig et al., 2014b) perform in-
dividual trip planning that considers future traffic hazards
in routing. Furthermore, their approach estimates the ex-
pected traffic flow in areas with low sensor coverage.

Anomaly detection methods have been widely applied for
mining data streams including techniques such as data
clustering (Guo et al., 2009), principal component analy-
sis (PCA) (Lakhina et al., 2004), wavelet transform (No-
vakov et al., 2013) and many others. Some detection meth-
ods follow a time series analysis perspective and focus on
forecasting methods such as ARIMA (Zare Moayedi &
Masnadi-Shirazi, 2008; Fujimaki et al.). ARIMA mod-
els are a wide family of analysis and forecasting models
that are used widely in forecasting urban traffic time series
data (Lee & Fambro, 1999; Williams et al., 1998). This
makes ARIMA models suitable for our scenario. (Nien-
nattrakul et al., 2010), used distance-based outlier detec-
tion techniques, reducing the size of the original database,
in order to efficiently identify outliers in massive stream-
ing datasets. (Schettlinger et al., 2010) proposed an on-
line time series filter, using repeated median regression,
which is able to smooth the data and keep intact the sig-
nal’s trend. (Branch et al., 2013) developed a distributed
and in-network model in order to detect outliers on net-

work exchanges among neighboring nodes. (Fried et al.,
2015) proposed a Bayesian approach to model time series
of counts, using Metropolis-Hastings algorithm in order to
estimated the parameters of the model.

7. Conclusions
In this paper we presented an efficient approach for re-
solving whether irregular sensor measurements are due to
faulty sensors or unexpected traffic. Our approach exploits
sensors’ past measurements and the crowd’s wisdom for
decision making. We implemented our proposals using the
Lambda-Architecture for processing real-time and histori-
cal data, and an Android application for extracting answers
from the human crowd. We applied three different outlier
detection techniques that identified complementary set of
faulty sensors. Finally, our detailed experimental evalua-
tion indicates that our approach can effectively resolve the
source of irregular measurements in real-time.

Acknowledgments
This research has been co-financed by the European Union
(European Social Fund ESF) and Greek national funds
through the Operational Program Education and Lifelong
Learning of the National Strategic Reference Framework
(NSRF) - Research Funding Program: Thalis-DISFER,
Thalis-CompGeom, Aristeia-MMD Investing in knowl-
edge society through the European Social Fund, the FP7
INSIGHT project and the ERC IDEAS NGHCS project.

References
Artikis, A., Weidlich, M., Schnitzler, F., Boutsis, I., Liebig,

T., Piatkowski, N., Bockermann, C., Morik, K., Kaloger-
aki, V., Marecek, J., Gal, A., Mannor, S., Kinane, D., and
Gunopulos, D. Heterogeneous Stream Processing and
Crowdsourcing for Urban Traffic Management. in Proc.
17th International Conference on Extending Database
Technology (EDBT), Athens, Greece, March 24-28, pp.
712-723, 2014.

Biem, Alain, Bouillet, Eric, Feng, Hanhua, Ranganathan,
Anand, Riabov, Anton, Verscheure, Olivier, Koutsopou-
los, Haris, and Moran, Carlos. IBM Infosphere Streams
for Scalable, Real-time, Intelligent Transportation Ser-
vices. Proceedings of the 2010 ACM SIGMOD Interna-
tional Conference on Management of data, 2010.

Bockermann, C. and Blom, H. The streams framework.
Technical Report 5, TU Dortmund University, 2012.

Boutsis, Ioannis and Kalogeraki, Vana. On task assignment
for real-time reliable crowdsourcing. In ICDCS, pp. 1–
10, Madrid, Spain, June 2014.

ICML Workshop

Branch, JoelW., Giannella, Chris, Szymanski, Boleslaw,
Wolff, Ran, and Kargupta, Hillol. In-network outlier
detection in wireless sensor networks. Knowledge and
Information Systems, 34(1):23–54, 2013. ISSN
0219-1377. doi: 10.1007/s10115-011-0474-5.
URL http://dx.doi.org/10.1007/
s10115-011-0474-5.

Dou, Adam, Kalogeraki, Vana, Gunopulos, Dimitrios,
Mielikainen, Taneli, and Tuulos, Ville H. Misco: a
mapreduce framework for mobile systems. In PETRA,
June 2010.

Dou, Adam Ji, Kalogeraki, Vana, Gunopulos, Dimitrios,
Mielikinen, Taneli, Tuulos, Ville, Foley, Sean, and Yu,
Curtis. Data clustering on a network of mobile smart-
phones. In SAINT, pp. 118–127, Munich, Germany, July
2011.

Fried, Roland, Agueusop, Inoncent, Bornkamp, Bjrn,
Fokianos, Konstantinos, Fruth, Jana, and Ickstadt,
Katja. Retrospective bayesian outlier detection in
ingarch series. Statistics and Computing, 25(2):
365–374, 2015. ISSN 0960-3174. doi: 10.1007/
s11222-013-9437-x. URL http://dx.doi.org/
10.1007/s11222-013-9437-x.

Fujimaki, Ryohei, Yairi, Takehisa, and Machida, Kazuo.
An anomaly detection method for spacecraft using rel-
evance vector. In Learning, The Ninth Pacific-Asia
Conference on Knowledge Discovery and Data Mining
(PAKDD, pp. 785–790. Springer.

Guo, Feng, Yang, Yingzhen, and Duan, Lian. Anomaly
detection by clustering in the network. In Compu-
tational Intelligence and Software Engineering, 2009.
CiSE 2009. International Conference on, pp. 1–4. IEEE,
2009.

Kakantousis, Theofilos, Boutsis, Ioannis, Kalogeraki,
Vana, Gunopulos, Dimitrios, Gasparis, Giorgos, and
Dou, Adam. Misco: A system for data analysis applica-
tions on networks of smartphones using mapreduce. In
MDM, pp. 356–359, Bengaluru, India, July 2012. IEEE.

Kinane, D., Schnitzler, F., Mannor, S., Liebig, T., Morik,
K., Marecek, J., Gorman, B., Zygouras, N., Katakis, Y.,
Kalogeraki, V., and Gunopulos, D. Intelligent synthe-
sis and real-time response using massive streaming of
heterogeneous data (insight) and its anticipated effect on
intelligent transport systems (its) in dublin city, ireland.
In ITS, Dresden, Germany, November 2014.

Lakhina, Anukool, Crovella, Mark, and Diot, Christiphe.
Characterization of network-wide anomalies in traffic
flows. In Proceedings of the 4th ACM SIGCOMM con-
ference on Internet measurement, pp. 201–206. ACM,
2004.

Lee, Sangsoo and Fambro, Daniel B. Application of sub-
set autoregressive integrated moving average model for
short-term freeway traffic volume forecasting. Trans-
portation Research Record: Journal of the Transporta-
tion Research Board, 1678(1):179–188, 1999.

Liebig, Thomas, Piatkowski, Nico, Bockermann, Christian,
and Morik, Katharina. Predictive trip planning-smart
routing in smart cities. In EDBT/ICDT Workshops, pp.
331–338, 2014a.

Liebig, Thomas, Piatkowski, Nico, Bockermann, Christian,
and Morik, Katharina. Route planning with real-time
traffic predictions. In Proceedings of the 16th LWA Work-
shops: KDML, IR and FGWM, Aachen, Germany, pp.
83–94, 2014b.

Ma, Shuo, Zheng, Yu, and Wolfson, Ouri. T-Share: A
Large-Scale Dynamic Taxi Ridesharing Service. ICDE,
2013.

McCreadie, Richard, Macdonald, Craig, Ounis, Iadh, Os-
borne, Miles, and Petrovic, Sasa. Scalable Distributed
Event Detection for Twitter. BigData Conference: 543-
549, 2013.

Niennattrakul, V., Keogh, E., and Ratanamahatana, C.A.
Data editing techniques to allow the application of
distance-based outlier detection to streams. In Data Min-
ing (ICDM), 2010 IEEE 10th International Conference
on, pp. 947–952, Dec 2010. doi: 10.1109/ICDM.2010.
56.

Novakov, Stevan, Lung, Chung-Horng, Lambadaris, Ioan-
nis, and Seddigh, Nabil. Studies in applying pca and
wavelet algorithms for network traffic anomaly detec-
tion. In High Performance Switching and Routing
(HPSR), 2013 IEEE 14th International Conference on,
pp. 185–190. IEEE, 2013.

Patroumpas, Kostas and Sellis, Timos. Event Process-
ing and Real-time Monitoring over Streaming Traffic
Data. Web and Wireless Geographical Information Sys-
tems Lecture Notes in Computer Science Volume 7236,
pp 116-133, 2012.

Schettlinger, K., Fried, R., and Gather, U. Real-time sig-
nal processing by adaptive repeated median filters. In-
ternational Journal of Adaptive Control and Signal Pro-
cessing, 24(5):346–362, 2010. ISSN 1099-1115. doi:
10.1002/acs.1105. URL http://dx.doi.org/10.
1002/acs.1105.

Williams, Billy M, Durvasula, Priya K, and Brown, Don-
ald E. Urban freeway traffic flow prediction: applica-
tion of seasonal autoregressive integrated moving av-
erage and exponential smoothing models. Transporta-

http://dx.doi.org/10.1007/s10115-011-0474-5
http://dx.doi.org/10.1007/s10115-011-0474-5
http://dx.doi.org/10.1007/s11222-013-9437-x
http://dx.doi.org/10.1007/s11222-013-9437-x
http://dx.doi.org/10.1002/acs.1105
http://dx.doi.org/10.1002/acs.1105

ICML Workshop

tion Research Record: Journal of the Transportation Re-
search Board, 1644(1):132–141, 1998.

Yi, B.-K., Sidiropoulos, N.D., Johnson, T., Jagadish, H.V.,
Faloutsos, C., and Biliris, A. Online data mining for co-
evolving time sequences. In Data Engineering, 2000.
Proceedings. 16th International Conference on, pp. 13–
22, 2000.

Zare Moayedi, H. and Masnadi-Shirazi, M.A. Arima model
for network traffic prediction and anomaly detection.
In Information Technology, 2008. ITSim 2008. Interna-
tional Symposium on, volume 4, pp. 1–6, Aug 2008.

Zygouras, Nikolas, Zacheilas, Nikos, Kalogeraki, Vana,
Kinane, Dermot, and Gunopulos, Dimitrios. Insights
on a Scalable and Dynamic Traffic Management System.
EDBT, 2015.

